There is a factor 1/2 missing in the second line. It now reads
\[\mathbf{J}_{\text{cond}} \cdot \mathbf{E} = \hat{\sigma} \mathbf{E} \cdot \mathbf{E} \approx \frac{-i\omega}{4\pi \mu_1} \hat{N}^2 \mathbf{E} \cdot \mathbf{E}\]
\[\approx \frac{1}{2} \left[ \frac{2n_k \omega}{4\pi \mu_1} - i \frac{\omega}{4\pi \mu_1} (n^2 - k^2) \right] E_0^2\]

There also is a factor 1/2 missing in the equation two lines lower:
\[P = \frac{1}{2} \sigma_1 E_0^2\]

The electric field is not normal but parallel to the surface. Thus the sentence should read:
\[\hat{Z}_s\] was defined as the ratio of the electric field \(E\) parallel to the surface of a metal to the total current density \(J\) induced in the material:

The sign of the imaginary part has to be negative:
\[\hat{Z}_s = \frac{(2\pi)^2 \mu_1}{c} \frac{\delta_0}{\lambda_0} (1 - i)\]

The derivation of Eq. (3.1.12) is not straightforward, since the previous Equation (3.1.10) is not fully correct. The displacement field \(D\) used in this equation has to be redefined, but eventually cancels in Eq. (3.1.11). The complete derivation is given here.

The Hamilton operator of Eq. (4.1.1) describes the energy density per unit volume; thus it should be called Hamilton density.

The formula should read:
\[\mathbf{\bar{A}}(\mathbf{q}) = \frac{1}{\Omega} \int \mathbf{A}(\mathbf{r}) \exp(-i\mathbf{q} \cdot \mathbf{r}) d\mathbf{r}\]

The Coulomb gauge should read \(\nabla \cdot \mathbf{A} = 0\) as correctly given in Eq. (2.1.6).

The sign in the denominator is incorrect. The formula should read:
\[ \hat{e}(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\omega/\tau} \]

p.99, last line of figure caption
The approximation shows deviations from the Drude model for frequencies above the scattering rate \( \gamma \).

p. 117, Fig. 5.11
the equations in the two parabola are incorrect, since \( \hbar \) has to be replaced by \( \hbar^2 \) hence they should read:

\[ \hbar \omega = \frac{\hbar^2}{2m} (q^2 + 2qk_F) \]

\[ \hbar \omega = \frac{\hbar^2}{2m} (q^2 - 2qk_F) \]

p.167, line 3
The sentence should read:
... and thus delocalization occurs if the impurity concentration exceeds a certain critical concentration.

p. 246, sec 10.1.1
The Hagen-Rubens relation quoted in the text is incorrect. It should read:

\[ 1 - R(\omega) \propto \sqrt{\omega} \]

p. 319, line 6 from the bottom the sentence should read:
In this case the (originally) localized orbitals at energy position \( E_d \) (or \( E_f \)) away from the Fermi level are broadened, due to interaction with the conduction band; ...

p. 323, after Eq. (12.2.7)
Fermi gas instead of Fermi glass

p. 374, Fig. 14.1 (a)
The axis should be labelled \( T_c/T \)

p. 383, line 15
The equation referred to should read (12.2.14)

p.385, line 3 from bottom
The sentence should read: First, because the nodes in the gap extend to zero energy, ...

p. 459, Fig. F.6
the equations in the two parabola are incorrect, since \( h \) has to be replaced by \( h^2 \) hence they should read:

\[
\hbar \omega = \frac{\hbar^2}{2m} \left( q^2 + 2q k_F \right)
\]

\[
\hbar \omega = \frac{\hbar^2}{2m} \left( q^2 - 2q k_F \right)
\]