Grundlagen der Experimentalphysik I (WS 2017/18) Prof. Dr. Martin Dressel Übungsblatt 10 (15.01.18 und 19.01.18)

Aufgabe 10.1

Betrachten Sie fallende Regentropfen in der Luft. Nehmen Sie dazu an, dass die Reibung dem Stokes-Gesetz $F_r = -6\pi\eta Rv$ folgt, wobei R der Radius der Tropfen ist und η die Viskosität der Luft.

- a) Stellen Sie die Bewegungsgleichung auf. Der Auftrieb kann dabei vernachlässigt werden.
- b) Lösen Sie die Bewegungsgleichung. Welche Endgeschwindigkeit stellt sich ein? Wie groß ist die Zeitkonstante τ , mit der sich die Endgeschwindigkeit einstellt?
- c) Geben Sie die Werte für die Endgeschwindigkeit und die Zeitkonstante an, wenn R = 50 μ m und η = 0,018 mPas ist.

Aufgabe 10.2

Aus dem unteren Ende eines senkrecht aufgehängten Röhrchens mit Radius r=1 mm tritt langsam Flüssigkeit aus, so dass sich ein Tropfen bildet. Welches Volumen haben die Flüssigkeitstropfen für a) Wasser, b) Ethanol und c) n-Pentan in dem Moment, in dem sie vom Röhrchen abreißen? Mit welcher chemischen Eigenschaft scheint die Oberflächenspannung hier verknüpft zu sein? Hinweis: Benötigte Konstanten sind im Internet leicht zu finden.

Aufgabe 10.3

Durch eine Rohrleitung mit 4 cm Radius fließt Wasser mit 5 m/s. Die Leitung fällt allmählich um 10 m ab und erweitert sich dabei auf einen Radius von 8 cm.

- a) Wie groß ist die Strömungsgeschwindigkeit des Wassers auf dem niedrigen Niveau?
- b) Wie groß ist der Druck im Wasser auf dem niedrigen Niveau, wenn er auf dem höheren $1,5\cdot10^5$ Pa war?

Aufgabe 10.4

Ein Heißluftballon hat ein Volumen von $2,2\cdot10^3$ m³ und ist mit heißer Luft der Dichte 0,96 kg/m³ gefüllt.

- a) Welches maximale Gewicht kann der Ballon heben, wenn er von kalter Luft der Dichte 1,29 kg/m³ umgeben ist?
- b) Angenommen, die Luft wäre ein ideales Gas und der Luftdruck würde 80000 Pa betragen, welche Temperaturdifferenz gäbe es zwischen innen und außen?

 <u>Hinweis:</u> Luft besteht etwa aus 20% Sauerstoff und 80% Stickstoff.

 Gaskonstante: R = 8,31447 J/(K·mol)

Aufgabe 10.5

Das Gasvolumen eines Wetterballons sei am Erdboden V_0 = 10 m³. Er sei mit Helium unter Atmosphärendruck gefüllt (Dichte Helium: $\varrho_{\rm He}$ = 0,178 kg/m³, Dichte Luft am Boden unter Normalbedingungen: $\varrho_{\rm L,0}$ = 1,293 kg/m³).

- a) Mit welcher Nutzlast M kann der Ballon gerade noch vom Erdboden abheben, wenn die Masse seines Korbes und seiner Hülle zusammen m=5 kg beträgt?
- b) Die Hülle des Ballons sei nicht dehnbar. Welche Endhöhe erreicht der Ballon (ohne Nutzlast)?
 <u>Hinweis:</u> Beachten Sie, dass die Dichte der Luft mit zunehmender Höhe abnimmt (barometrische Höhenformel).